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SUMMARY

This work compares a numerical and analytical adjoint equation method with respect to boundary
condition treatments applied to the quasi-1D Euler equations. The e�ect of strong and weak boundary
conditions and the e�ect of �ux evaluators on the numerical adjoint solution near the boundaries are
discussed. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For e�cient computation of large-scale �uid �ow problems, an e�cient error estimation and
grid adaptation algorithm is desirable. Traditional error estimation or grid adaptation may not
su�ce, since these may be insu�ciently related to relevant engineering quantities. The dual
formulation can be used as an e�cient a posteriori error estimation in the quantity of interest.
However, derivation of the dual problem, especially the accompanying boundary conditions,
is not a trivial task.
Two ways of formulating the dual problem exist: analytical [1, 2] and numerical [3, 4].

This paper gives an outline of the boundary-condition derivation for both methods. For the
analytical method, carefully crafted boundary conditions are needed. For the numerical method,
imposing strong or weak boundary conditions to the primal problem has a great in�uence on
the implicitly given boundary conditions for the numerical dual problem. Also, the e�ect of
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the numerical �ux evaluators of the primal problem on the adjoint solution at the boundaries
are discussed.

2. FLOW EQUATIONS AND OUTPUT FUNCTIONAL

A simple test problem was chosen. A subsonic inviscid, compressible gas �ow through a
convergent–divergent channel is considered. Let q=(�; u; p)T be the solution of the quasi-1D
Euler equations: ∮

@�
AF(q) d@�−

∫
�

dA
dx
J (q) d�=0 (1)
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where �; u; p; E;� and @� are de�ned as the density, velocity, pressure, total energy, inner
domain x∈ 〈−1; 1〉 and the boundary of the domain x=−1 and 1, respectively. A denotes the
height of the channel and is de�ned as
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As boundary conditions, we de�ne typical engineering boundary conditions: �=�in, u= uin
at in�ow and p=pout at out�ow. Extrapolation of Riemann invariants enables us to �nd the
unknown states at the boundaries. The output functional considered is

I =
∫ 1

−1
p(q) d� (3)

where x=−1 and 1 are the co-ordinates of the inlet and outlet, respectively.
For solving the primal problem, a structured-grid, cell-centred �nite-volume solver is

applied. We consider Lax and Osher �ux evaluators at the cell faces. The steady-state solution
of the non-linear system of equations is obtained by a global Newton iteration method.

3. ANALYTICAL ADJOINT APPROACH

Following Reference [2], the analytical adjoint equations are derived as follows: First, the
quasi-1D Euler equations are linearized:

Lq′=
@
@x

(
@AF(q)
@q

q′
)

− dA
dx

@J (q)
@q

q′= r′ (4)
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where q′ is a small solution perturbation. The change in the output functional due to small
perturbations in the �ow solution can be written as

I ′=
∫
�

@p
@q
q′ dx (5)

The in�uence of the change in solution on the functional can be determined by the adjoint
equation. Using the continuous Lagrangian multiplier v, where (Lq′ − r′)=0, the augmented
Lagrangian functional becomes:

I ′=
∫
�

@p
@q
q′ dx −

∫
�
v(Lq′ − r′) dx (6)

After integration by parts, we obtain

I ′=
∫
v · r′ dx −

∫
�

(
L∗v− @p

@q

)
q′ dx −

[
v
@AF(q)
@q

q′
]1

−1
(7)

where the adjoint operator L∗ is de�ned as

L∗v ≡ −
[
@AF(q)
@q

]T
vx −

[
dA
dx

@J (q)
@q

]T
v (8)

To remove the dependence of q′ in Equation (7), v must satisfy the adjoint equation

L∗v=
@p
@q

(9)

and the boundary term must satisfy

q′T
[
@AF(q)
@q

]T
v

∣∣∣∣∣
1

−1
= 0 (10)

Equation (9) can be written by using Jacobians based on the non-conservative �ow variables
q=(�; u; p)T, so that the adjoint equation becomes

A
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 (11)

For this system of adjoint ordinary-di�erential equations, complementary boundary condi-
tions have to be de�ned. In this paper, the primal boundary conditions have been chosen as
�=�in, u= uin at in�ow and p=pout at out�ow. Derivation of associated adjoint boundary
conditions is illustrated below.
Considering small perturbations in the whole domain, the perturbed solutions have to obey

the boundary conditions. Hence, at the boundaries, perturbations in the prescribed states
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vanish. This yields the following conditions on the perturbations:

W1q′ =0; x=−1 (12)

W2q′ =0; x=1 (13)

where

W1 =

(
1 0 0

0 1 0

)
; W2 = (0 0 1) (14)

This result leaves us with one degree of freedom at in�ow and two degrees of freedom at
out�ow. In other words, we are looking for the null spaces to �nd the missing vectors in
compliance with Equation (10). At x=−1, this yields

Null(W1)T[AF ′(q)]Tvin = 0 (15)

The rank of W1 is 2, hence, its kernel has dimension 1

Null(W1)=Span{(0 0 1)T} (16)

At x=1, it holds that

Null(W2)T[AF ′(q)]Tvout = 0 (17)

The rank of W2 is 1 and the kernel has dimension 2

Null(w2)=Span{(1 0 0)T; (0 1 0)T} (18)

Multiplying the null vectors with the Jacobian gives the following adjoint boundary conditions:

v2 +
�

�− 1q2v3 = 0; x=−1 (19)

q2v1 + q22v2 +
1
2q
3
2v3 = 0

q1v1 + 2q1q2v2 +
(

�
�− 1q3 +

3
2q1q

2
2

)
v3 = 0


 ; x=1 (20)

4. NUMERICAL ADJOINT APPROACH

Whether the residual and output functional are linearized around a given design variable [1]
or around a given mesh [3], the Jacobian of the numerical residual Rh(qh), is needed in order
to set up and solve the numerical adjoint equations. Assuming that the boundary conditions
for the primal problem are included in the residual vector Rh(qh), the in�uence of the pri-
mal boundary conditions is included in the Jacobian. When taking the transposed Jacobian
for computation of the adjoint solution, the adjoint boundary conditions are automatically in-
cluded in the system of equations. This constitutes a great advantage of the numerical adjoint
approach.
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The abstract formulation Rh(qh)=0 tacitly incorporates the precise formulation of the
boundary conditions and of the nonlinear �ux evaluators. In the case of strong boundary
conditions, the boundary conditions are imposed as constraints on the approximation of the
solution, whereas for weak boundary conditions, the boundary conditions are implied by the
equations and are accounted for by an appropriate choice of the boundary �uxes. It is to
be noted, however, that two di�erent formulations with nearly identical primal conditions
can yield very di�erent adjoint solutions. In our numerical experiments, the Jacobian matrix
@Rh(qh)=@q is evaluated by automatic di�erentiation [5].

5. NUMERICAL EXPERIMENTS

5.1. Strong versus weak boundary conditions

Strong enforcement of the boundary conditions in the primal residual operator, implies corre-
sponding restrictions for the dual solution space. However, a boundary treatment that yields
the correct primal boundary conditions does not automatically yield the correct dual boundary
conditions. This di�culty can be avoided by imposing the boundary conditions of the primal
residual operator in weak form. Computation of the primal problem with strong boundary
conditions leads to signi�cant layers near the boundaries (Figure 1, left), whereas the layers
have (almost) disappeared when using weak boundary conditions (Figure 1, right). The ad-
vantage is that no additional restrictions to the solution space are necessary and the resulting
dual problem is automatically well-posed. This property facilitates implementation of the nu-
merical adjoint method in a general purpose �ow solver. The user of the software takes full
advantage of adjoint based grid adaptation, without being burdened by setting up a well-posed
dual problem.

5.2. E�ect of �ux evaluators near the boundaries

Another point of interest is the e�ect of the �ux evaluator in the primal problem on the adjoint
solution near the boundaries. In general, the numerical adjoint solution should converge to the
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Figure 1. Numerical adjoint solution with strong boundary conditions (left) and weak boundary
conditions (right) for the Lax scheme, with h= 1

32 .
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Figure 2. Numerical adjoint solution with weak boundary conditions for the Osher scheme
with engineering boundary conditions (left) and Osher scheme with a half Osher path �ux

evaluation at the boundaries (right), h= 1
32 .

analytical adjoint solution when the mesh is �ne enough. When looking at the same mesh and
solving the primal problem with di�erent �ux evaluators, the corresponding adjoint solutions
may have slightly di�erent solutions, especially near the boundaries. Numerical experiments
con�rm this behaviour. The e�ects of �ux evaluators can be divided into two e�ects.
The �rst e�ect concerns di�erences in the adjoint solutions when an adjoint variable

is not constrained. For instance, as can be seen from the analytical boundary conditions,
Equation (19), v1 is a free variable at x=−1. When comparing the adjoint solutions from
Lax (Figure 1, right) and Osher (Figure 2, left), v1 has a di�erent solution near x=−1.
The second e�ect concerns artifacts or layers near the boundaries. The use of non-physical

interpolation techniques or �ux functions that contain non-physical di�usion terms, like the
Lax scheme, can yield entirely incorrect behaviour of the adjoint solution, even if they function
properly for the primal solution.
The Lax di�usion term brings state variables from the exterior of the computational area

into the interior, without respecting the real physics. A similar behaviour can be found for
the Osher scheme when using the engineering boundary conditions �in; uin; pout. This problem
can be overcome when the �ux at the boundary is replaced by an appropriate boundary �ux,
which respects the physics in every aspect. Figure 2 shows the Osher �ux at the boundaries
from the engineering boundary conditions (Figure 2, left) and the special Osher boundary �ux
computed by a half Osher path (Figure 2, right) [6, 7].

6. CONCLUSIONS

The main conclusions are listed below:

• In contrast to the numerical adjoint method, the analytical adjoint method requires deriva-
tion of adjoint boundary conditions.

• When using the numerical adjoint method, use of weak boundary conditions for the
primal problem is advisable in order to prevent erroneous values of the dual solution
near the boundaries.
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• When a variable of the adjoint problem is not set by boundary conditions, the numerical
adjoint solution near that boundary can be dependent on the primal �ux evaluator.

• Although the primal solution shows good results, when the primal boundary conditions
and=or the boundary �ux evaluator does not obey the �ow physics, the adjoint solution
reacts immediately by showing artifacts near the boundaries.
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